Chemical Modification of Trehalose. Part XII. ${ }^{1}$ Synthesis of Azido- and Amino-trehaloses via Epoxide Derivatives

By L. Hough, P. A. Munroe, A. C. Richardson,* (in part) Y. Ali and S. T. K. Bukhari, Department of Chemistry, Queen Elizabeth College, Campden Hill Road, London W8 7AH

2,3-Anhydro-4,6-O-benzylidene- α-D-mannopyranosyl 2,3-anhydro-4,6-O-benzylidene- α-D-mannopyranoside, and the corresponding isomeric allo,allo- and non-symmetrical allo,manno-diepoxides all undergo predominant trans-diaxial ring opening with azide anion to give diazides of altropyranosyl altropyranosides. Likewise, ring opening of the monoepoxide, 2,3-anhydro-4,6-O-benzylidene- α-D-mannopyranosyl 4,6-O-benzylidene- α-Dglucopyranoside gave 3 -azido-3-deoxy- α-D-altropyranosyl 4,6-O-benzylidene- α-D-glucopyranoside.

Our studies of the chemical modification of trehalose have led to the synthesis, from the $4,6: 4^{\prime}, 6^{\prime}$-dibenzylidene diacetal, ${ }^{2}$ of three $2,3: 2^{\prime}, 3^{\prime}$-diepoxide derivatives, ${ }^{3}$ namely 2,3-anhydro-4,6-O-benzylidene- α-D-allopyranosyl 2,3-anhydro-4,6-O-benzylidene- α-D-allopyranoside (1), the
of the disaccharide by treatment of these diepoxides with sodium azide in the presence of ammonium chloride.

By analogy with the ring opening of methyl 2,3-anhydro-4,6-O-benzylidene- x-D-mannopyranoside and -allopyranoside, ${ }^{4}$ the diepoxides (1), (7), and (11) should

corresponding mannopyranosyl mannopyranoside (7), undergo trans-diaxial nucleophilic ring opening with and the non-symmetrical allo, manno-isomer (11). We have now explored the synthesis of diamino-derivatives
${ }^{1}$ Part XI, L. Hough, A. K. Palmer, and A. C. Richardson, J.C.S. Perkin I, 1972, 2513.
${ }^{2}$ G. Birch and A. C. Richardson, J. Chem. Soc. (C), 1970, 749.
azide anion to give diazido-derivatives of altropyranosyl altropyranosides. Diaxial ring opening of the two

[^0]symmetrical epoxides, (1) and (7), with hydride ion (from lithium aluminium hydride) has previously been observed. ${ }^{\mathbf{5}, 6}$ Reaction of the allo,allo-diepoxide (1) with azide anion afforded a crystalline diazide in 71% yield; t.1.c. indicated that at least two minor components were present which we could not isolate. The three products

(7)

(8) $\mathrm{R}=\mathrm{H}$
(9) $\mathrm{R}=\mathrm{Ms}$
(10) $\mathrm{R}=\mathrm{Bz}$
were estimated visually to be in the approximate ratio of $80: 15: 5$, and the minor products must presumably be those resulting from diequatorial ring opening on one and both rings, respectively. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the major diazide showed that it was a symmetrical product. The resonances attributable to the benzylic protons and to $\mathrm{H}-1$ and $\mathrm{H}-\mathbf{l}^{\prime}$ appeared as two singlets at $\tau 4.44$ and $5 \cdot 00$, respectively. Furthermore, the observed small ($<1 \mathrm{~Hz}$) coupling between $\mathrm{H}-1$ and $\mathrm{H}-2$ is a characteristic feature of altropyranosides ${ }^{5,7}$ and is consistent with the product being the expected $2,2^{\prime}$ -diazido-altro,altro-isomer (2). The structure of the diazide (2) was confirmed by the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the derived $3,3^{\prime}$-dibenzoate (4) in which the H-3,H-3' resonance was observed at low field as a narrow triplet ($\tau 4.49 ; J_{2,3}=J_{3,4}=c a .2 .5 \mathrm{~Hz}$) owing to the deshielding effect of the adjacent benzoyloxy-groups. ${ }^{2,3,5-7}$ A similar result was obtained with the $3,3^{\prime}$-dimesylate (3) (see Table).

Reaction of the manno,manno-diepoxide (7) with sodium azide and ammonium chloride in hexamethylphosphoric triamide gave a diazide in 89% yield. Again the altro-configuration of both pyranosyl rings of the $3,3^{\prime}$-diazide (8) was indicated by its ${ }^{1} \mathrm{H}$ n.m.r. spectrum, in which both the benzylic and $\mathrm{H}-1, \mathrm{H}-\mathrm{l}^{\prime}$ resonances appeared as singlets (Table). In the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the derived syrupy $2,2^{\prime}$-dibenzoate (10) the anomeric protons ($\mathrm{H}-1, \mathrm{H}-\mathrm{l}^{\prime}$) resonated as a singlet at $\tau 4.80$ and, as a result of deshielding by the benzoyloxy group, the $\mathrm{H}-2, \mathrm{H}-2^{\prime}$ signal appeared at lower field ($\tau 4 \cdot 67$) as a doublet ($J 2.5 \mathrm{~Hz}$), consistent with the $3,3^{\prime}$-diazidoaltro, altro-structure (10).

The non-symmetrical diepoxide 2,3 -anhydro-4,6-O-benzylidene- α-D-allopyranosyl 2,3 -anhydro-4,6-O-benzyl-idene- α-D-mannopyranoside (11) was treated similarly with azide to give a major crystalline product in 76% yield. A minor product was detected by t.l.c. $(<5 \%)$ but all efforts to isolate and characterise it failed. In this case, and in contrast to the foregoing symmetrical diazido-derivatives [(2) and (8)], the major product (12)

[^1]was non-symmetrical as suggested by the appearance of two benzylic resonances in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum at $\tau 4 \cdot 16$ and $4 \cdot 20$. The altro-stereochemistry of the two pyranosyl rings was shown by the appearance of both anomeric proton signals as singlets at $\tau 4 \cdot 43$ and $4 \cdot 46$. Hence the product was identified as the $2,3^{\prime}$-diazidoaltro, altro-isomer (12).

(11)

(12)

We have previously ${ }^{3}$ described the synthesis, from trehalose, of a monoepoxide, namely 2,3 -anhydro-4,6-O-benzylidene- α-D-mannopyranosyl 4,6- O-benzylidene- α-Dglucopyranoside (13). Reaction of the epoxide (13) with azide anion afforded a single syrupy product, which had the predicted altro-configuration in one of the pyranosyl rings as shown by its ${ }^{1} \mathrm{H}$ n.m.r. spectrum. This contained two benzylic resonances at $\tau 4.48$ and 4.54 and two resonances attributable to $\mathrm{H}-1$ and $\mathrm{H}-\mathrm{l}^{\prime}$; the proton attached to the gluco-ring gave a doublet at $\tau 4.87(J 3.8 \mathrm{~Hz})$ and that attached to the altro-ring gave a singlet at $\tau 5.08$.
The conversions of the $2,2^{\prime}$-diazide (2) and the 3 -mono-azide (14) into the corresponding amino-disaccharides were then studied. The acetal protecting groups were removed from the diazide (2) by acidcatalysed methanolysis and the syrupy product (5) was reduced catalytically to the amorphous $2,2^{\prime}$-diamino-$2,2^{\prime}$-dideoxy-disaccharide (6). Methanolysis of the mono-azide (14) gave the crystalline 3 -azido-3-deoxy-α-D-altropyranosyl α-D-glucopyranoside (15), which was reduced to the crystalline 3 -amino- 3 -deoxy- α-D-altropyranosyl α-D-glucopyranoside (16), a positional and stereochemical isomer of the antibiotic trehalosamine (2-amino-2-deoxy- α-D-glucopyranosyl α-d-glucopyranoside). ${ }^{8}$ Neither the diamine (6) nor the monoamine (16) showed antibacterial activity.
All ${ }^{1} \mathrm{H}$ n.m.r. data are summarised in the Table. In the spectra of the altropyranosides (2), (3), (4), (8), (10), (12), and (14) the $\mathrm{H}-1, \mathrm{H}-1^{\prime}$ and $\mathrm{H}-3, \mathrm{H}-3^{\prime}$ resonances were not sufficiently resolved to permit measurement of the long-range coupling $J_{1.3}$, which is normally less than $1 \mathrm{~Hz}{ }^{7}$
${ }^{7}$ B. Coxon, Carbohydrate Res., 1966, 1, 357; Tetrahedron, 1965, 21, 3481.
${ }^{8}$ F. Arcamone and F. Bizioli, Gazzetta, 1957, 874, 896; S. Umezawa, K. Tatsuta, and R. Muto, J. Antibiotics, Ser. A, 1967, 20, 388.

(13)

(14)

(15) $\mathrm{R}=\mathrm{N}_{3}$
(16) $\mathrm{R}=\mathrm{NH}_{2}$

EXPERIMENTAL

For general procedures see ref. 3. Optical rotations were taken, unless otherwise stated, for chloroform solutions at $20-25^{\circ}$.

2-Azido-4,6-O-benzylidene-2-deoxy- α-D-altropyranosyl 2-Azido-4,6-O-benzylidene-2-deoxy- α-D-altropyranoside (2).The allo,allo-diepoxide ${ }^{3}$ (1) (5 g) dissolved in hot $N N$ dimethylformamide (200 ml) was treated with a slurry of sodium azide (10 g) and ammonium chloride (10 g) in water

The dimesylate (3) had m.p. $110^{\circ},[\alpha]_{\mathrm{D}}+79^{\circ}(c 2 \cdot 1)$ (Found: $\mathrm{C}, 46.2 ; \mathrm{H}, 4.7 ; \mathrm{N}, 11.2 ; \mathrm{S}, 8.9 . \quad \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{~S}_{2}$ requires C, $46 \cdot 4 ; \mathrm{H}, 4.4 ; \mathrm{N}, 11 \cdot 6 ; \mathrm{S}, 8.8 \%$).

2-Amino-2-deoxy- α-D-altropyranosyl 2-Amino-2-deoxy- α -D-altropyranoside (6).-To the diazide (2) (1.0 g) dissolved in hot methanol (50 ml) was added methanolic 1% hydrogen chloride (10 ml). The reaction was monitored by t.l.c. [chloroform-methanol ($4: 1 \mathrm{v} / \mathrm{v}$)], which indicated that reaction was complete within $4-5 \mathrm{~min}$. The solution was
${ }^{1} \mathrm{H}$ N.m.r. parameters: first-order coupling constants (Hz) and chemical shifts (τ values) at 100 MHz

(10 ml). The mixture was heated under reflux for $12-14 \mathrm{~h}$; t.l.c. [ethyl acetate-light petroleum ($4: 6$)] then indicated that reaction was complete and one major product had been formed along with two minor products, visually estimated to be in the approximate ratio of $80: 15: 5$. The cooled mixture was poured slowly into stirred ice-water (200 ml) and the resulting white solid was filtered off, washed with water, and recrystallised from ether. A further recrystallisation from ethanol, afforded the diazide as an ethanolate ($4 \cdot 2 \mathrm{~g}, 71 \%$), m.p. 114- $115^{\circ},[\alpha]_{\mathrm{D}}+120^{\circ}(c 1 \cdot 25)$ (Found: C, $54 \cdot 7 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 14 \cdot 2 . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{9}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ requires $\mathrm{C}, 54.75 ; \mathrm{H}, 5 \cdot 5 ; \mathrm{N}, 13.7 \%$). The presence of ethanol of crystallisation was revealed by a triplet (3 H) at $\tau 8.86$ in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum.

Attempts to isolate the two minor products by silica gel chromatography failed to give a homogeneous product.

The dibenzoate (4) (73\%) had m.p. 64-66 ${ }^{\circ}$ (from methanol), $[\alpha]_{\mathrm{D}}+52^{\circ}$ (c 1) (Found: C, 62.1; H, 4.7; N, $10 \cdot 8 . \quad \mathrm{C}_{40} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{11}$ requires $\left.\mathrm{C}, 61 \cdot 9 ; \mathrm{H}, 4 \cdot 6 ; \mathrm{N}, 10 \cdot 8 \%\right)$.
immediately neutralised with basic lead carbonate and filtered. To the filtrate was added Adams catalyst (25 mg) and the mixture was hydrogenated at $30 \mathrm{lb} \mathrm{in}^{-2}$ for 1 h . Filtration and evaporation gave the diamine as a glass $(0 \cdot 2$ $\mathrm{g}, 33 \%),[\alpha]_{\mathrm{D}}+109^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)$ (Found: C, 42.2; H, 7•1; N, $8 \cdot 1 . \quad \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{9}$ requires $\mathrm{C}, 42 \cdot 3 ; \mathrm{H}, 7 \cdot 0 ; \mathrm{N}, 8 \cdot 2 \%$).

3-Azido-4,6-O-benzylidene-3-deoxy- α-D-altropyranosyl 3-Azido-4,6-O-benzylidene-3-deoxy- α-D-altropyranoside (8).-A solution of the diepoxide ${ }^{3}(7)(5 \mathrm{~g})$ in hexamethylphosphoric triamide (20 ml) was heated to 80° and treated with a paste of powdered sodium azide (10 g) and ammonium chloride $(10 \mathrm{~g})$ with water $(10 \mathrm{ml})$. The mixture was stirred at 80° for 48 h , after which t.l.c. [benzene-acetone ($4: 1 \mathrm{v} / \mathrm{v}$)] indicated that the reaction was complete. The mixture was cooled and poured into stirred ice-water (500 ml). The precipitate was filtered off, washed with water, and dissolved in ether (100 ml). The ethereal layer was washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and evaporated to a stiff syrup which crystallised from ethanol-chloroform. A
further recrystallisation, from ethanol, afforded the diazide ($5 \cdot 3 \mathrm{~g}, 89 \%$), m.p. $108-110^{\circ},[\alpha]_{\mathrm{D}}+336^{\circ}$ (c $1 \cdot 1$ in MeOH) (Found: C, $54.9 ; \mathrm{H}, 4.8 ; \mathrm{N}, 14 \cdot 2 . \quad \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{9}$ requires $\mathrm{C}, 54.9 ; \mathrm{H}, 4.9 ; \mathrm{N}, 14.7 \%$). The dimesylate (9) (79%) had m.p. 197-200,$[\alpha]_{\mathrm{D}}+27^{\circ}(c 2)$ (Found: C, 46.2; H, 4.3; $\mathrm{N}, 11 \cdot 2 ; \mathrm{S}, 8 \cdot 9 . \quad \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{13} \mathrm{~S}_{2}$ requires $\mathrm{C}, 46 \cdot 4 ; \mathrm{H}, 4 \cdot 4$; $\mathrm{N}, 11 \cdot 6 ; \mathrm{S}, 8.8 \%$). The dibenzoate (10) was a colourless glass (85%), characterised by its ${ }^{1} \mathrm{H}$ n.m.r. spectrum (see Table).

3-Azido-4,6-O-benzylidene-3-deoxy- α-D-altropyranosyl 2-Azido-4,6-O-benzylidene-2-deoxy- α-D-altropyranoside (12)-A solution of the allo, manno-diepoxide ${ }^{3}$ (11) (1 g) in hexamethylphosphoric triamide (10 ml) was heated to 70°, and a slurry of ammonium chloride (1.5 g), sodium azide (1.5 g), and water (1.5 ml) was added. The mixture was stirred for 24 h ; t.l.c. (ether) then indicated that the starting material had been converted into a major product and a minor one $(<5 \%)$. The mixture was cooled and poured on ice (150 g). The precipitate was filtered off, washed with water, and partitioned between water and ether. The ethereal solution was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to a hard glass which crystallised from ethanol-chloroform, to give a chromatographically homogeneous product ($0.9 \mathrm{~g}, 76 \%$), m.p. 103°, $[\alpha]_{\mathrm{D}}+61^{\circ}(c \quad 0.6)$ (Found: C, $55 \cdot 1 ; \mathrm{H}, 5.0 ; \mathrm{N}, 14.8$. $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{9}$ requires C, $54 \cdot 9 ; \mathrm{H}, 4 \cdot 9 ; \mathrm{N}, 14 \cdot 8 \%$). Attempts to isolate the minor component by chromatography were unsuccessful.

3-Azido-4,6-O-benzylidene-3-deoxy- α-D-altropyranosyl 4,6-O-Benzylidene- α-D-glucopyranoside (14). -The monoepoxide (13) (5 g) was dissolved in hexamethylphosphoric triamide $(20 \mathrm{ml})$ and a slurry of sodium azide (5 g) and ammonium chloride (5 g) and water (2.5 ml) was added. The mixture was heated in an oil-bath at 85° for 12 h ; t.l.c. [chloroformacetone $(9: 1 \mathrm{v} / \mathrm{v})]$ then indicated that the reaction was complete. The mixture was cooled and poured on crushed
ice (250 g); the precipitate was filtered off, washed with water, and partitioned between water and ether. Evaporation of the dried $\left(\mathrm{MgSO}_{4}\right)$ ether layer gave the monoazide as a hard glass ($4 \cdot 8 \mathrm{~g}, 90 \%$), $[\alpha]_{\mathrm{D}}+44 \cdot 6^{\circ}$ (c 1 in MeOH) (Found: C, $57 \cdot 4 ; \mathrm{H}, 5 \cdot 4 ; \mathrm{N}, 7 \cdot 2 . \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{10}$ requires C, $57 \cdot 5 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 7 \cdot 7 \%$).

3-Azido-3-deoxy- α-D-altropyranosyl α-D-Glucopyranoside (15).-The di-O-benzylidene derivative (14) (1.5 g) dissolved in anhydrous methanol $(20 \mathrm{ml})$ was treated with methanolic 1% hydrogen chloride (5 ml). T.l.c. [chloroform-methanol ($9: 1 \mathrm{v} / \mathrm{v}$)] indicated that the reaction was complete within $5-6 \mathrm{~min}$. The mixture was immediately neutralised with lead carbonate and, after filtration, evaporated to a syrup which was washed with light petroleum to remove benzaldehyde dimethyl acetal. Crystallisation from methanolchloroform gave the monoazide ($0.6 \mathrm{~g}, 59 \%$), m.p. 105-108 ${ }^{\circ}$ (crystal transition $74-76^{\circ}$), $[\alpha]_{\mathfrak{p}}+155^{\circ}(c 1.0$ in MeOH$)$ (Found: C, $\mathbf{3 9 \cdot 0}$; H, $5 \cdot 7 ; \mathrm{N}, 11 \cdot 8 . \quad \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{10}$ requires C, 39.2 ; H, 5.7 ; N, 11.5%).

3-Amino-3-deoxy- α-D-altropyranosyl α-D-Glucopyranoside (16).-The monoazide (15) (1.0 g) in methanol (50 ml) was hydrogenated over palladium-charcoal (20 mg) at 3 atm for 2 h . T.l.c. [chloroform-methanol $(3: 2 \mathrm{v} / \mathrm{v})$] then showed that the reaction was complete. After filtration, the solution was evaporated to a syrup which crystallised from methanol-chloroform to give the amine ($0.65 \mathrm{~g}, 70 \%$), m.p. $130-133^{\circ},[\alpha]_{\mathrm{D}}+170^{\circ}$ ($c 1 \cdot 0$ in MeOH) (Found: C , $42 \cdot 2 ; \mathrm{H}, 6 \cdot 7 ; \mathrm{N}, 4 \cdot 1 . \mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{10}$ requires $\mathrm{C}, 42 \cdot 2 ; \mathrm{H}$, 6.7 ; $\mathrm{N}, 4.2 \%$).

We thank Bristol Laboratories for financial assistance and biological testing, and the Physico-Chemical Measurements Unit, Harwell, for the $100 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectra.
[2/1695 Received, 18th July, 1972]

[^0]: ${ }^{3}$ L. Hough, P. A. Munroe, and A. C. Richardson, J. Chen. Soc. (C), 1971, 1090.
 ${ }^{4}$ R. D. Guthrie and D. Murphy, J. Chem. Soc., I 963, 5288.

[^1]: ${ }^{5}$ L. Hough, A. C. Richardson, and E. Tarelli, J. Chem. Soc. (C), 1971, 1732.
 ${ }^{6}$ L. Hough, A. C. Richardson, and E. Tarelli, J. Chem. Soc. (C), 1971, 2122.

